Measurement of prompt and non-prompt J/ ψ in pPb collisions at $\sqrt{S_{NN}} = 5.02$ TeV

Songkyo Lee*, Lamia Benhabib, Yongsun Kim, Hyunchul Kim, Mihee Jo, Kisoo Lee

dilepton Meeting 9th April 2014

HIN-14-009

- Pre-approved on 3rd April, Thursday
- Ist ARC review meeting within 1 week

Latest documentation

- 2nd version of PAS available, 11 pages
- http://cms.cern.ch/iCMS/analysisadmin/get?analysis=HIN-14-009-pas-v1.pdf
 Detailed analysis note : AN-13-346, 109 pages

http://cms.cern.ch:80/iCMS/jsp/openfile.jsp?tp=draft&files=AN2013_346_v3.pdf

Scale Factor

- get p_T distribution for 3 different η ranges and calculate SF as [TNP data]/[TNP MC].
 η range has been changed according to comments from muon POG
 (barrel vs endcap) -2.4< η < -0.8, -0.8< η < 0.8, 0.8< η < 1.93
- Definition of probe for tracking efficiency has been changed (HI to pp definition)
 - previous : Correlation between muID and tracking efficiency

Only trigger efficiency is used for SF

- Now : No correlation between muID and tracking efficiency

muID, tracking, and trigger efficiencies are multiplied and used for SF

TNP corrected Efficiency =					
MC Efficiency \otimes	TNP DATA efficiency of μ^+	TNP DATA efficiency of μ^{-}			
	TNP MC efficiency of $\mu^{\scriptscriptstyle +}$	TNP MC efficiency of μ^{-}			

 \square

Results : Cross-section

PAS Fig.3 – Fig.4

Double differential cross-section

- N^{corr}(J/ψ → μ⁺μ⁻) is the acceptance and the efficiency corrected number of J/ψ decayed in the μ⁺μ⁻ channel in given bin;
- $L_{int} = (34.6 \pm 1.6) nb^{-1}$ is the integrated luminosity;
- B(J/ψ → μ⁺μ⁻) = (5.93 ± 0.06)% is the branching ratio of the J/ψ → μ⁺μ⁻ decay;
- Δp_T and Δy are the widths of the (p_T,y) bin.

- Fitting qualities are improved
- Systematic uncertainties are updated

30

Outline

PAS Fig.6 - Fig.7

$$R_{FB} = \frac{[N_{J/\psi}/(A * \epsilon)]^{FW}}{[N_{J/\psi}/(A * \epsilon)]^{BW}}$$

- Fitting qualities improved
- Systematic uncertainties updated

- RFB VS YCM are added
- No strong rapidity dependence (mid-rapidity regions and difference between y_{CM} values of forward and backward are small)

Results : E^{THF} dependence

|у_{СМ}| larger

PAS Fig.8 – Fig.9

- Bin boundaries are same with pPb jet analysis, HIN-13-001.
- \blacksquare Hard to have finer E_T bins due to the statistics in bin
 - $1.5 < y_{CM} < 1.93 \& 3 < p_T < 6.5 GeV/c (smaller Bjorken x regions)$
- \blacksquare We are discussing how to display the result : e.g.) R_{FB} vs $E_{T}{}^{HF}$

- N_{tracks} dependence for R_{FB} measurement (by tomorrow)
- R_{pPb} (See Yongsun's slide)
- Further study for systematic uncertainties

	prompt J/ ψ (%)	non-prompt J/ψ (%)	
Yield extraction	0.12-1.45	0.55-2.78	
Acceptance estimation	0.04-1.42	0.04-1.42	
TNP weighted Efficiency	0.14-25.42	0.06-25.55	
		\land	
Total	0.51-25.33	0.71-25.58	

BACK-UP

Tag and Probe

updated after frozen

Tag and Probe

- efficiency = passing/(passing + failing)
- Trigger matching is corrected

9th April 2014

dilepton meeting

Re-weight using TNP

9th April 2014

dilepton meeting

Re-weight using TNP

- Same weighting procedure is done for the <u>2nd run period</u>.
- MC sample is one-way boosted to the same direction with 1st run. (expect to be compensated by weighting)
- Not much differences between 1st & 2nd run

9th April 2014

Results : Cross-section

PAS Fig.4 – Fig.5

Double differential cross-section

- N^{corr}(J/ψ → μ⁺μ⁻) is the acceptance and the efficiency corrected number of J/ψ decayed in the μ⁺μ⁻ channel in given bin;
- $L_{int} = (34.6 \pm 1.6) nb^{-1}$ is the integrated luminosity;
- B(J/ψ → μ⁺μ⁻) = (5.93 ± 0.06)% is the branching ratio of the J/ψ → μ⁺μ⁻ decay;
- Δp_T and Δy are the widths of the (p_T,y) bin.

- No strong rapidity dependence
- Clue for the different production yield in forward and backward for low p_T
- Systematic uncertainties will be updated.

$$R_{FB} = \frac{[N_{J/\psi}/(A * \epsilon)]^{FW}}{[N_{J/\psi}/(A * \epsilon)]^{BW}}$$

- No strong dependency on rapidity
- R_{FB} decreases smaller than unity as p_T becomes lower (smaller x).
- Improving systematic uncertainties in progress

Multiplicity variables

• Two variables for multiplicity

- 1. N_{tracks} ^{|η<2.4|} (binning : 0, 65, 95, 350)
- 2. E_T^{HF |η>4|} (binning : 0, 20, 30, 120 GeV) *
- We investigated dependence on $E_T^{HF |\eta>4|}$

[Fractions in min-bias sample]

	$[E_T^{ \eta >4}]$	$\langle E_T^{ \eta >4} \rangle$	Frac
pPb	0-20.0	9.4	73%
min-	20.0-30.0	24.3	18%
bias	≥ 30.0	37.2	9%

 Fraction for each bins are selected ~30% in muon sample according to statistics for fitting procedure.

Results : E^{THF} dependence

|у_{СМ}| larger

PAS Fig.7 – Fig.9

- R_{FB} becomes smaller for lower p_T and higher multiplicity.
- Improving systematic uncertainties in progress.

9th April 2014

dilepton meeting

Total systematic uncertainties

= $\sqrt{(\text{Acceptance})^2 + (\text{TNP weighted Efficiency})^2 + (\text{Fitting})^2}$

- Acceptance : 0.07 0.96 %
- TNP weighted Efficiency : 0.36– 17.08 %
- Fitting : 0.16–14.74 %
- Total : 1.4–19 %

Systematic uncertainties are calculated to be conservative.

Preliminary results for dependency on N_{tracks}

- Not plotted in $< p_T >$ and and systematic uncertainties are in progress
- Extracted signals will be double-checked later.

 Similar trends with E_T^{HF} bins

pp from theoretical prediction

BPH-10-014

[Prompt]

[non-prompt]

