Prototype Block Detector for low energy neutron measurement

Lab Meeting
2013/08/16
Friday
Benard Mulilo

Test at KIRAMS

Fig.1: Korea Institute of Radiological & Medical Sciences –KIRAMS (1st & 2nd panels)

Third test of the prototype block detector for low energy neutrons at KIRAMS [New light guides]

Electronics setup

Fig.2: Electronics set-up for data collection

Experimental setup

Fig.3: Experimental set-up for data collection at KIRAMS-Seoul, South Korea

Test results with proton beam on an iron target (neutrons)...

Pedestal data results

Fig.4: Pedestal data results for detectors 1, 2, 3 & 4 respectively.

Test results with proton beam on an iron target (neutrons)....

Zero base time of gammas

Fig.5: Time of flight distributions of gammas & neutrons for detectors 1, 2 & 3 respectively. 4^{th} panel (D3) shows ToF distribution reference from 252 Cf source .

Test results with proton beam on an iron target (neutrons)....

 Reason for the unclearly defined ToF distributions for gammas and neutrons.(insufficient data collection)

Fig.6: KiSoo's result depicting the charge distribution of a plot of TDC vs ADC for detectors 1, 2, 3 & 4 with the RHS panel being used as a reference.

Test results with proton beam on an iron target (neutrons)

Fitted data for the ToF distributions(closest fit performed so far).

Fig.7: Roughly fitted data results for the ToF distributions of gammas & neutrons

Future tasks

- Re-do the fit for the ToF distributions to get a better fit if possible.
- Plot of the final neutron energy
- Others.....