Outline NPLab internal meeting, Apr 12, Chong Kim

1. Contributions to PHENIX

- Took expert shift duties as an RPC expert
- Wrote RPC QA related base codes for online production

2. Analysis progress

- a. RPC efficiency (µ reconstruction efficiency, NOT performance)
 - Position determination by using MC
 - Luminosity weighted efficiency (for Run 12) calculated
- b. S/BG ratio (W, Run 12) by using MC embedding
 - Calculated W likelihood by using MC
 - Calculated PDFs (probability density function) by using obtained W likelihood
 - Performed unbinned maximum likelihood fit by using obtained PDFs

1. Contributions – Rpc QA

- Wrote QA codes for RPC before Run 13 started
 - Purpose: online production. Used for QA and status monitoring
 - Items: mainly rough efficiency and timing distributions
 - ε vs. Run (time)
 - ε vs. RPC segments
 - 2D efficiency for each arm/station
 - Peak timing vs. Run (time)
 - Peak timing vs. RPC segments
- Ralf modified base codes for current online production pages
 - Basic kinematic variables' distribution added

Ν

4 5 6

N_RPC1

N RPC3

Results by raw code: efficiency

Run (time)

N_1B _ N_1C

□ N_3C ● N_H

○ N_38

N_3A

7 8 octant

Results by raw code: timing

4

Current online production: RPC QA

Current online production: RPC QA

1. Contributions – Rpc QA

Current online production: RPC QA

- Data: pp510GeV Run12 official pDSTs
- Rpc efficiency:
 - ε = (# of μ tracks <u>w/ RpcDCA < 15</u>) / # of μ tracks
 (both numerator and denominator satisfy basic cuts)
 - Basic cuts:
 - Evt_bbcZ < 30
 - p > 5
 - DG0 < 30
 - DDG0 < 10
 - lastGap = 4
 - triggerbit = SG1_MuIDLL1 (mostly, not always)
 - RpcDCA:
 - Rpc1: (RpcMatchVtx)Rpc1dca, (RpcMatchSt1)Rpc1dca
 - RPc3: (RpcMatchSt3)Rpc3dca, (RpcMatchMuID)Rpc3dca
 - Determined geometrical acceptance of each RPC station by using MC (next page)

- All black numbers' unit are <u>cm</u>
- All n acceptance calculated by using readout strip's position
- Heights of RPC1 are rough estimation: RPC1 acceptance is NOT PRECISE!

• Rpc position determination by MC:

- None (Blue): none of conditions were satisfied
- Rpc1 (Green): Rpc1dca cut satisfied, while Rpc3dca cut didn't
- Overlap (Yellow): both (Rpc1dca and Rpc3dca) condition satisfied
- Rpc3 (Red): Rpc3dca cut satisfied, while Rpc1dca cut didn't

	0 < Rpc1dcas < 15	0 < Rpc3dcas < 15
None	×	×
Rpc1	ο	×
Overlap	ο	ο
Rpc3	×	ο

Rpc1 s ∈ (%) O S, LC 0.9 • Ν N, LC 0.8 0.7 0.6 4 ••• 0.5 0.4 ٠ 0.3 0 0.2 0.1 2 0 E ×10³ 367.5 365 365.5 366 366.5 367 368 368.5 Run Rpc3 s ∈ (%) O S, LC 0.9 • Ν • N, LC 0.8 0.7 0.6 14 84 • • ¢ 0.5 0.4 0.3 0.2 0.1 ₀ ⊟ ×10³ 365 365.5 366 366.5 36 367.5 368 368.5 Run

- Rpc efficiency vs. Run
 - Black markers (LC) indicate luminosity corrected efficiency

data

• Rpc efficiency vs. Run w/ separated η region

 Purple markers indicate portion of data amount to the whole (both stations share overlap (circle) region)

- Intermediate summary
 - Calculated μ reconstruction efficiencies for both RPC stations
 - Not finished completely, but it looks goal is not very far either
- Intermediate to do
 - Still 'Jump' like behavior need to be understood:
 - Cross check by Sangwha and Ralf confirmed same Jump like behavior
 - Sangwha confirmed MuID prescale related problem
 - Tested various trigger set, include/exclude SG1 triggers

- Got S/BG ratio for Run 12 W $\rightarrow \mu$ preliminary request
- Input:
 - Data:

pp510 Run 12, official pDSTs, (total 311 runs)

– Luminosity:

<u>South - 42.8 pb ⁻¹</u>, <u>North - 43.4pb⁻¹</u> taken with either <u>SG1&1D&BBCnovertex</u> or <u>SG1&RPC3&BBCnovertex</u> triggers

- MC (w signal + μ BGs): produced by Ralf

Process	# of gen. events	Cross section (mb)	L (pb⁻¹)
direct photon	6400 M	5.32 × 10 ⁻²	120.3
onium	28680 M	0.135	212.4
openbottom	1532 M	7.30 × 10 ⁻³	209.9
opencharm	107190 M	0.571	187.7
w	99.3 M	1.66 × 10 ⁻⁶	59819.3
whad	81 M	1.66×10^{-6}	48795.2
wjet	8.2 M	1.20 × 10 ⁻⁶	6833.3
wtau	82 M	1.66×10^{-6}	49397.6
Z	63.9 M	1.59 × 10 ⁻⁵	4018.9
zjet	8.2 M	1.02×10^{-6}	8039.2

μ MC produced ('high' condition)

• Process of unbinned maximum likelihood fit:

- Input (continue):
 - Data
 - W (signal): PYTHIA + PISA
 - μ BG: PYTHIA + PISA

(corrected by cross section estimated with dimuon mass spectra analysis in Run 11)

Sample of signal sensitive kinematic variables' distribution

• Basic cut:

- 16 < р_т < 60
- DG0 < 20.0
- DDG0 < 9.0
- Chi2 < 20.0
- (0 < Rpc1Dca < 100) <u>OR</u> (0 < Rpc3Dca < 100)
 (at least one of two RpcDCA satisfy condition)
- lastGap = 4
- * Study is ongoing for applying RpcDca cut:
 - a. Rpc1Dca
 - b. Rpc3Dca
 - c. Rpc1Dca or Rpc3Dca (current set)
 - d. Smaller one between 2 RpcDca

Top 8: DDG0 vs. DG0 / Bot 8 : Chi2 vs. DG0

Obtained W likelihood distributions for each arm and charge

• Process of unbinned maximum likelihood fit:

<u>Data driven Hadron BG: extrapolate from low W likelihood region</u>

• Process of unbinned maximum likelihood fit:

Fit results

 $(16 < p_T < 60 (GeV), W likelihood > .92)$

	W	H BG	μ BG (fixed)	S/BG
S -	116.674 + 17.992 - 7.294	193.888 + 20.273 - 19.285	48.2574	0.481832
S +	125.123 + 20.796 - 20.124	276.597 + 24.154 - 23.135	47.6711	0.385863
N -	41.424 + 12.574 - 11.848	177.270 + 17.337 - 16.449	48.9655	0.183103
N +	87.110 + 16.813 - 16.083	239.227 + 20.746 - 19.825	46.4522	0.304923

THIS IS NOT FINAL RESULTS !

- Intermediate summary
 - Took S/BG ratio for Run 12 W $\rightarrow \mu$
 - Preliminary granted in this week

- Intermediate to do
 - First of all, I DO need to UNDERSTAND WHAT I DID
 - Followed exact trail and conditions from last run 11 analyzer
 - Source of error, tune factors properly to Run 12 conditions...
 - Test various RpcDCA conditions: final method need to be determined by test
 - Test 2 different set of MC

Summary and To do

- Summary
 - RPC efficiency: archived progress, modified position determination method
 - Run 12 W $\rightarrow \mu$: took S/BG ratio for preliminary
- To do
 - RPC efficiency: need to understand and resolve 'Jump' like behavior
 - Run 12 W $\rightarrow \mu$:
 - Test and confirm which RpcDCA condition should be used
 - Check two different types of MC iuput

Backup

Kinematic variables' distribution: South

Backup

Kinematic variables' distribution: North

