Test Result for the bar-type Neutron Detector with a modified electronic set-up.

Lab Meeting

2013/07/12

Friday

Mulilo Benard

⁶⁰Co source experimental set-up

Fig. 4 : Correlations between time and charge values of two scintillator PMTs

Fig. 5: Average time distributions of two scintillator PMTs after slewing effect was corrected.

²⁵²Cf experimental set-up

Fig.7: Californium experimental set up

6/21/13

Fig. 8: Time of flight distributions for gammas and neutrons

Final neutron energy distribution

Test Result for the bar-type Neutron Detector with a modified electronic set-up.

Lab Meeting 2013/06/21

Friday Mulilo Benard* Lee Songkyo

Go Yeonju

Synopsis

Second test result for the bar-type neutron detector with a modified electronic set-up. (Fig.1 on slide 4).

Objective

With a modified electronic circuit, we aimed to study the performance of the neutron detector in terms of:

⊙ Time resolution

• Position resolution

⊙ Time of flight distributions.

⁶⁰Co source experimental set-up

difference of two signals.

 Measurements carried out at 10 cm step from left.

Fig. 3: Expt. set-up with ⁶⁰Co

Ch1 (2090 V): ADC raw data

Ch2 (2160 V): ADC raw data

Ch1 (2090 V): pedestal left

Ch2 (2160 V): pedestal right

Ch1 (Left-2090 V): After pedestal subtraction

Ch2 (Right-2160 V); After pedestal subtraction

Fig.6: ADC channels after pedestal subtraction

Ch1 (Left: 2090 V) TDC vs ADC

Ch2 (Right:2160 V) TDC vs ADC

Fig.7: Charge distribution in channels 1 and 2

Fig. 9 : Correlations between time and charge values of two scintillator PMTs

Fig. 10: Average time distributions of two scintillator PMTs before and after slewing effect was corrected.

Fig. 8: Time difference between two scintillator PMTs

	α (cm/ns)	β (cm)	σ _x (cm)
CFD result	7.28±0.03	1.53±0.22	9.81
Table 1: Fitting parameters for the linear functional form ($x = \alpha \Delta t + \beta$) in figure 8.			

²⁵²Cf experimental set-up

Fig.11: Californium experimental set up

Test results with ²⁵²Cf source

Raw data for adc and tdc (left)

Raw data for adc and tdc (right)

6/21/13

Fig.12: Californium adc and tdc raw data

Ch1 (2090 V): pedestal left

Ch2 (2160 V): pedestal right

Test results with ²⁵²Cf source

CFD_accidental_left

CFD_accidental_right

Test results with ²⁵²Cf source

CFD_data_t0_fit (Left)

CFD_data_t0_fit (Right)

Test result with ²⁵²Cf

Time of flight distributions

Fig. 16: Time of flight distributions for neutrons and gammas

Final neutron energy distribution

BACK UP

Fig.1: Huge difference in the number of charge entries in the two channels

TIMING RESOLUTION AND TIME WALK

Fig.12: Time Walk depends on Amplitude

- \Rightarrow **Time walk** $is time shift (<math>\Delta t$) depending on signal amplitude.
- \diamond **Limits** Time Resolution.
- Discriminator produces logic output signal when charge input crosses threshold.
- Measured time is time at crossing point and happens a little later than incidence of particle.
- ♦ This time difference is Time Walk.

Experimental setup

- VTD(C.A.E.N. Mod. N844)
- Coincidence measurement
- Threshold for signal: 140 mV
- Threshold for trigger: 20 mV

- CFD(C.A.E.N. Mod. N415A)
- Coincidence measurement
- Threshold for signal: 35 mV/ns
- Threshold for trigger: 5 mV/ns

