

Current Status of the Neutron Detector Prototypes for LAMPS at the RAON Facility

KPS Fall 2013 Daejeon Thursday October 31 *MULILO Benard (M.Sc.) LEE KiSoo (Ph.D) LEE Kyongsei (Dr.) HONG Byungsik (Prof.) [Korea University]

MULILO Benard (M.Sc.)

2013 Fall KPS Oct 30 – Nov 1

Synopsis

Nuclear Physics Laboratory

Brief Review of the
 LAMPS Systems at
 RAON

Low-energy LAMPS at RAON

Neutron Detector
 Prototype Module
 Terminal Objectives

 Assembly & Test of Block-type Neutron
 Detector Prototype
 Module with FTLG Assembly & Test of Block-type Neutron
 Detector Prototype
 Module with SFLG

Test of Block-type
 Neutron
 Detector
 Prototype Module
 with SFLG at KIRAMS

Summary

MULILO Benard (M.Sc.)

2013 Fall KPS Oct 30 – Nov 1

Brief Review of the LAMPS Systems at RAON

LAMPS_H

LAMPS

LAMPS_H

Is a composition of the:
Solenoid spectrometer
Dipole spectrometer
Neutron detector array

Fig. 1: High energy LAMPS (LAMPS_H) de JKPS, Volume 62, No. 9, May 2013, pp. 1227~1232

MULILO Benard (M.Sc.)

2013 Fall KPS Oct 30 – Nov 1

Low-energy LAMPS (LAMPS_L)

Fig. 2: A schematic diagram of LAMPS_L (left) & a stack of block detectors (right)

MULILO Benard (M.Sc.)

2013 Fall KPS Oct 30 – Nov 1

Low-energy LAMPS (LAMPS_L).....

Fig. 3: LAMPS_L in conjunction with KOBRA to allow use of RIB from ISOL (left) and IF (right)

2013 Fall KPS Oct 30 - Nov 1

Block-type Neutron Detector Prototype Single Module

Terminal objectives

Build prototypes for the low energy neutron measurements using:

- ✤ Fish-tail light guides (FTLG)
- ✤ Square frustum light guides (SFLG)

Construct:

- Time of Flight (ToF) distributions
- The kinetic energy spectra of the neutrons emitted from the spontaneous fission of the ²⁵²Cf radiation source.

MULILO Benard (M.Sc.)

2013 Fall KPS Oct 30 – Nov 1

Assembly and Test of the Block-type Neutron Detector Prototype Single Module

Block detector assembly

Fig. 4: Detector assembly process. Scintillator BC-408, fish-tail light guide and a photomultiplier tube used.

2013 Fall KPS Oct 30 – Nov 1

Electronic and Experimental Set-ups

MULILO Benard (M.Sc.)

2013 Fall KPS Oct 30 - Nov 1

Test results with ²⁵²Cf source

Time of flight distribution fitted data results

Fig.6 : Average time of flight distribution data results for detectors D1, D2 and D3 respectively.

MULILO Benard (M.Sc.)

2013 Fall KPS Oct 30 – Nov 1

$$E_{k} = \frac{m_{n}c^{2}}{\sqrt{1 - v^{2}/c^{2}}}$$
Here, m_{n} is the neutron mass

$$\frac{dN}{dE} \propto e^{-\eta E} \sinh\left[\sqrt{\xi E}\right],$$
(2)
Where ' η ' & ' ξ ' are free fitting parameters
with $\eta = 0.88$ MeV⁻¹ and $\xi = 2.0$ MeV⁻¹

2013 Fall KPS Oct 30 – Nov 1

MULILO Benard (M.Sc.)

Assembly and Test of the Block-type Neutron Detector Prototype Single Module

Prototype block detector assembly

Using Square Frustum Light Guides (SFLG)

2013 Fall KPS Oct 30 – Nov 1

MULILO Benard (M.Sc.)

Test results with ²⁵²Cf source

Time of flight distribution fitted data results

Fig.9 : Time of flight distribution data results for detectors D1, D2 and D3 respectively.

2013 Fall KPS Oct 30 – Nov 1

MULILO Benard (M.Sc.)

Test results with ²⁵²Cf source....

Kinetic Energy Spectra of the Fission Neutrons

Fig.10 : Final neutron energy data results for detectors 1, 2 and 3 respectively. Energy spectra well reconstructed from 2.4 MeV and above.

2013 Fall KPS Oct 30 - Nov 1

Test of the Block-type Neutron Detector Prototypes with SFLG at KIRAMS using a 43 MeV, 1nA proton beam

Experimental setup

Fig.11: Experimental set-up for data collection at KIRAMS-Seoul, South Korea

MULILO Benard (M.Sc.)

2013 Fall KPS Oct 30 – Nov 1

Test results at KIRAMS using a 43 MeV, 1 nA Proton Beam

Time of flight distributions

**Kinetic energy spectrum of neutrons

Fig.12 : Time of flight distributions (left panel) and neutron energy spectra (right panel) respectively.

MULILO Benard (M.Sc.)

2013 Fall KPS Oct 30 – Nov 1

Summary

Low-energy LAMPS' neutron detector prototypes have been built.
 With the FTLG, the prototypes can measure fission neutron energies

$3.4 \le E_k \le 10$ MeV.

☞ With the SFLG, the prototypes can measure fission neutron energies $2.4 \le E_k \le 10$ MeV.

Possible measurable energy by the block detector with SFLG is

 $1.5 \le E_k \le 14$ MeV for neutrons produced when a high-energy p beam is irradiated on an Fe target.

Solution With Multi-hit events by performing clusterization using a module containing at least 7 prototypes.

"Everything should be made as simple as possible, but not simpler".

2013 Fall KPS Oct 30 – Nov 1

THANK YOU

MULILO Benard (M.Sc.)

2013 Fall KPS Oct 30 - Nov 1