

1.Solenoid Problem 2.fringe function for QD

20130531 lab meeting Songkyo Lee

1

Solenoid Problem

NOTICE : Problem!!

Solenoid B-Field from OPERA is not loaded properly

- 1. A variable is not correct
 : Their name is given by GEANT4
 Correct : (x,y,z) = (Point[0],[1],[2])
 Current code : (Point[0],[1],[3])
- 2. The field range is wrong Correct : -0.7m ~ 1.3m Current code : -0.3m ~ 1.3m (Values are also shifted)

Solenoid Problem

Comments from Young–Jin Kim (IBS) LAMPS meeting 2013.05.03

3. Direction of the B-field is the opposite

Before : Bz=+0.6T (positive) Current code : Bz=-xT (negative)

lab meeting

Are the up-to-date simulation results reliable? (2012.12.28~)

[Current GEANT4 Users]

- 1. Myself : FPD simulation Solenoid field is turned off \Rightarrow OK
- 2. Eunah : Neutron simulation not affected by B-field \Rightarrow OK
- 3. Yeonju : Not only neutron, charged particle included simulation
 - She is using the old code (constant B-field) \Rightarrow OK
 - It would be better to use OPERA
- 4. Jungwoo : TPC simulation \Rightarrow NOT OK!!!

Solution

- : I have fixed the problem for my code (discussed w/ Genie)
- : update on the svn soon (<u>http://nuclear.korea.ac.kr/websvn</u>) (planning to work with Jungwoo)

Solenoid Problem

Dogyun Kim(IBS) LAMPS workshop 2012.12.16

Question

- : Is the field map symmetric?
- : Which configuration?
 - (Solenoid / Yoke&Solenoid / Yoke&BumpSolenoid)
- : Is the solenoid inner diameter 1.8m or 2.0m?
- : Is the fringe field outside not concerned (··Yoke?)

Configuration

[07_LAMPS_QD_130401_fringe]

• How to cut the field region (z')?

- : Q & DP field region should not overlap (distance ~1cm)
- : At the same time, both Enge function value rather be similar

- No cut for inside the magnet
- No fringe function for the entrance region of Q-magnet

30th May 2013

FPD position

[07_LAMPS_QD_130401_fringe] [draw_xPos_zPoz.cc]

x-focusing seems improved with the fringe function

x position vs z position on FPD

FPD position

- central trajectory : proton with KE = 20MeV (p=194.7MeV/c)
- 7000 protons : 1000 protons for each δ ($\Delta\delta$ =5%)
- fastest hit on FPD only
- momentum direction random ($x' \leq 50 mrad$, $y' \leq 50 mrad$)

[07_LAMPS_QD_130401_fringe] [draw_yPos_zPoz_minTime.cc]

SUMMARY & FUTURE PLANS

Need to check the current QD system more

- : calculate resolving power
- : other study for FPD simulation

From Dr.Yun (Last discussion at HIM meeting)

- : focal plane width 1m & momentum acceptance ±20% (not 30%)
- : To improve the focal points,

Co

0.503

0.3795

- need higher order multipole element?
- (In case of MAGNEX, surface coils on DP)
 - : change the Enge-function parameter?

Darameters	of	the	fringe	field	Enge	functions	for	the	dinole	and	the c	madem	ale
Parameters	or	the	minge	neid	Enge	Tunctions	101	the	uipole	anu	une c	Juadruj	JOIE

 C_1

4.43

4.0034

Dipole

Quadrupole

 C_2

-1.39

-2.1

Ca

0.84

1.1973

BACK-UP

Matrix

[07_LAMPS_QD_130401_fringe]

• HeGas for ExpHall & DP (for track visualization)

NOTICE!

[07_LAMPS_QD_130401_fringe]

[rigidity_numbers]

IndmKE <- not random at the moment! (for useRandom 2)

δ(%)	rigidity(Tm)	p(MeV/c)	KE(MeV)
-20	0.51935605	155.806815	12.8484496
-15	0.5518158	165.54474	14.4920878
-10	0.58427554	175.282662	16.232247
-5	0.61673531	185.020593	18.0684027
0	0.64919506	194.758518	20.000002
5	0.68165481	204.496443	22.0264646
10	0.71411457	214.234371	24.1471975
15	0.74657652	223.972956	26.3617289
20	0.77906407	233.719221	28.6711319

distance ~1cm

x=-0.2m x=tan65(x-3+dp_z'/sin25) 두개의 접점이 (zp,xp)

 $q_z'=0.1m$ (F=0.87, 0.18) $dp_z'=0.34m$ (F=0.85, 0.14)

(파란 영역 간 거리 중 가장 짧은곳이 0.10223m임)

solve[-0.2==(d	3-10.34/Sin[25 d	leg]])*Tan[65 deg], d]		☆ 🖪
-10-11-27				≣ Exampl	es 🕫 Rando
n attempt was mad	e to fix mismatched	d parentheses, bracket	s, or braces.		
nput interpretation:					
solve -0.	$2 = \left(d - 3 + \frac{1}{\sin^2 t}\right)$	$\frac{0.34}{n(25^{\circ})}$ tan(65°)	for	d	
esult:				More digits Step-b	y-step solutio
d = 2.10223					
lot:					
lot: -1.0 -0.5 -1	0.5 1.0	1.5 2.0 2.5			
lot: -1.0 -0.5 -1 -2 -3	0.5 1.0	1.5 20 2.5			
Not: -1.0 -0.5 -1 -2 -3 -4	0.5 1.0	1.5 2.0 2.5	-0.2		
Plot: -1.0 -0.5 -1 -2 -3 -4 -4 -6 -7	0.5 1.0	1.5 20 2.5	0.2 - (d - 2.19	9549) cot(25 °)	

30th May 2013

FPD (07_LAMPS): same position w /05_LAMPS

x position vs z position on FPD

FPD (05_LAMPS)

Nuclear Physics Laboratory

30th May 2013

lab meeting

X VS Z

[07_LAMPS_QD_130401_fringe] [draw_xPos_zPos.cc]

FPD : x-8cm : detemined!

• FPD : x-15cm

30th May 2013

FPD Simulation

* for constant B field

- central trajectory : proton with KE = 20MeV (p=194.7MeV/c)
- 7000 protons (1000 protons for each δ)
- fastest hit on FPD only

FPD Simulation

* for constant B field

z position on FPD

- Gaussian fitting

 $\sigma \simeq 2.4 \text{ cm} \leftarrow \text{too large!}$

- **Dispersion D** = 4.26[cm/%]
- Resolving power $R \sim 180 \leftarrow too bad!$

Fringe function

• Enge Function :
$$F(z) = \frac{1}{1 + \exp(a_1 + a_2 \cdot (z/D) + ... + a_6 \cdot (z/D)^5)}$$

where D = gap parameter (=half-aperture) z' = distance from the effective field boundary

 $a_n = parameter for the n_{th} order polynomial$

 B_x

Quadrupole

B-field w/o fringe

$$= \frac{\partial B}{\partial y} \cdot y \qquad B_y = \frac{\partial B}{\partial x} \cdot x$$

Field gradient

$$K = \frac{\partial B}{\partial y} = \frac{\partial B}{\partial x}$$

B-field w fringe
$$B_f = B \cdot F = \sqrt{(FB_x)^2 + (FB_y)^2}$$

lab meeting

Dipole

- B-field w/o fringe
 - $B_y = -0.36 T$ (constant)
- B-field w fringe
- : different Enge function for Q and DP

Matrix

 $(x-1.8)^2 = (z-3)^2 = 2.8^2$ x=(z-3)tan65deg

원식과 직선식 바로 연립한 결과들 ㅇㅇ

Here!

F(z')ent

z=2.5506 x=-0.96370

F(z')_{exit}

B_{max}

Matrix

Here!

F(z')ent

F(z')_{exit}

Result:

Plot:

10

B_{max}

Matrix

for

X

그 z값을 ent 직선식에 넣음

z = 3.46433x=0.995759

30th May 2013

Matrix

z=5.61813 x=0.807325 반원과 직선 접점 Solve[1.8-(2.8^2-(z-3)^2)^(1/2)==(3-z)*Tan[5 deg]+1.8*(1-Cos[60 deg]+Tan[5 deg]*Sin[60 deg]),z]

그 z값을 직선식에 넣음 Solve[x==(3-5.61813)*Tan[5 deg]+1.8*(1-Cos[60 deg]+Ta deg]*Sin[60 deg]),x]

FPD Simulation

for constant B field

θ_f vs x_f

- ideal θ_f vs x_f should show vertical lines
- need some correction (hardware & software)

Matrix elements

SYSTEM TRANSFER MATRIX AT PATH-LENGTH L= 6,484955592E+00

	******	*****	*******	********	*******	****	
		x	A	Y	в	L	
	0	-1.920690E-12	1.795882E-12	0.000000E+00	0.000000E+00	6.484956E+00	
R22 -	1 X	-3.228867E-01	-1.504057E+00	0.000000E+00	0.000000E+00	2.607833E+00	
	2 A	-4.814135E-02	-3.321310E+00	0.00000E+00	0.00000E+00	6.163611E+00	
	3 Y	0.000000E+00	0.000000E+00	-5.210447E+00	-1.865086E+00	0.00000E+00	
	4 B	0.000000E+00	0.000000E+00	-5.956890E-01	-4.051498E-01	0.000000E+00	
R16 -	5 G	1.452690E-10	4.744609E-11	0.000000E+00	0.000000E+00	2.831984E-11	
	6 P	1.864604E+00	6.089987E-01	0.000000E+00	0.000000E+00	3.634962E-01	
	/ XX	1.394942E+00	7.260802E-01	0.000000E+00	0.0000000000000000000000000000000000000	3.011/46E+00	$\psi T_{126} + R_{22}R_{16}\tan(\psi)$
	8 XA	6.768649E+00	3.048345E+00	0.000000E+00	0.000000E+00	1.443217E+011	$126 = \frac{\cos(\psi)}{\cos(\psi)}$
	9 XI	0.00000E+00	0.000000E+00	3.184842E+00	2.7339408+00	0.00000E+00	
	IU XB	0.000000E+00	0.000000E+00	-4.819811E+00	-1.660342E+00	1.000700E+00	
	II XG	3./39681E-10	5.452944E-11	0.000000E+00	0.000000E+00	-1.980/98E-10	
	12 AP	4.625725E+00	2.2039986+00	0.000000E+00	0.0000000000000000000000000000000000000	-2.542550E+00	
	14 AV	0.092000E+00	3.1119/5E+00	6 011110E+00	5.000000E+00	1.8263285+01	T_{126}
	14 AI	0.00000E+00	0.000000E+00	-1 2470428+01	-4 217074E+00	0.000000E+00	$\tan\left(\psi\right) = -\frac{1}{R_{22}R_{16}}$
	15 AB	0.000000E+00	2 464270E-10	-1.24/642E+01	-4.31/9/4E+00	-9 027006E-10	1222410
T126	17 AG	1 154025F+01	3.464276E-10	0.000000E+00	0.0000000000000000000000000000000000000	-0.02/9905-10	
	10 VV	-2 740049F+00	9 694104E-02	0.000000E+00	0.000000E+00	3 0463052+00	
	10 VB	-2.740040E+00	-4 188925F-02	0.0000000000000000000000000000000000000	0.0000000000000000000000000000000000000	2 6735778+00	
	20 VG	0.0000000000000	0 000000E+00	5 734884E-10	3 196443E-11	0.0000000000000000000000000000000000000	
	21 YP	0.000000E+00	0.0000000000000000000000000000000000000	7 361062E+00	2 275357E+00	0.000000E+00	
	22 BB	-3 777320E-01	-2 672593E-01	0.000000E+00	0 000000E+00	1 561350E+00	
	23 BG	0.00000E+00	0.000000E+00	9.227170E-10	2.893497E-10	0.000000E+00	
	24 BP	0.000000E+00	0.000000E+00	1.124814E+01	3.714041E+00	0.000000E+00	
	25 GG	-2.118185E-10	-6.918158E-11	0.000000E+00	0.000000E+00	-4.129153E-11	
	26 GP	2.111316E-10	1.086773E-10	0.000000E+00	0.000000E+00	1.224395E-10	
	27 PP	-1.363878E+00	-4.950346E-01	0.000000E+00	0.000000E+00	2.557992E-01	

Nuclear Physics Laboratory

NON

SYMPT.

