

QD Design : fringe function

20130516 lab meeting Songkyo Lee

16th May 2013

FPD Simulation

for constant B field *

- central trajectory : proton with KE = 20MeV (p=194.7MeV/c)
- 7000 protons (1000 protons for each δ)
- fastest hit on FPD only

y position vs z position on FPD

FPD Simulation

* for constant B field

z position on FPD

- Gaussian fitting

 $\sigma \simeq 2.4 \text{ cm} \leftarrow \text{too large!}$

- **Dispersion D** = 4.26[cm/%]
- Resolving power $R \sim 180 \leftarrow too bad!$

Fringe function

• Enge Function :
$$F(z) = \frac{1}{1 + \exp(a_1 + a_2 \cdot (z/D) + ... + a_6 \cdot (z/D)^5)}$$

where D = gap parameter (=half-aperture) z' = distance from the effective field boundary

 $a_n = parameter for the n_{th} order polynomial$

MAGNEX spectrometer

i.e) Enge Function for the MAGNEX Geant4 simulation

Parameters of the fringe field Enge functions for the dipole and the quadrupole

	C_0	C_1	C_2	C_3	C_4	C_5
Dipole	0.503	4.43	-1.39	0.84	-0.1590	0.0575
Quadrupole	0.3795	4.0034	-2.1	1.1973	-0.3683	0.0478

• Since the Enge function covers $z'=\pm\infty$, we should give a cut for the field range!

 B_x

Quadrupole

B-field w/o fringe

$$= \frac{\partial B}{\partial y} \cdot y \qquad B_y = \frac{\partial B}{\partial x} \cdot x$$

Field gradient

$$K = \frac{\partial B}{\partial y} = \frac{\partial B}{\partial x}$$

B-field w fringe
$$B_f = B \cdot F = \sqrt{(FB_x)^2 + (FB_y)^2}$$

Dipole

- B-field w/o fringe
 - $B_y = -0.36 T$ (constant)
- B-field w fringe
- : different Enge function for Q and DP

SUMMARY & FUTURE PLANS

- Determine the proper field range (z' cut) Then, FPD simulation
- MOCADI & QQD simulation
 - : focal plane width $1m \& momentum acceptance \pm 30\%$
 - : waiting for Doctor Yoon

Enge function parameter

단, 이 값들은 GICOSY에서 사용하는 Default값입니다. 실지로는 자석 설계를 하면서, Fringing field값으로 부터 a1~a6을 구하게 됩니다. (예를 들어 opera3D와 같은 magnet 설계 code를 이용하여....) 실제 자석이 있으면 자기장 분포를 측정하여 측정값으로 <u>부터</u> 계수를 구하는 일을 해야 합니다.

이 값들을 사용하여 다시 GICOSY 계산을 수행합니다..... 이 과정을 반복하면 real에 가까운 계산 결과를 얻을 수 있게 됩니다.