#### Status

- Change in definition of Rpc efficiency:
  - # of Rpc hits / # of  $\mu$  tracks  $\rightarrow$  (# of  $\mu$  tracks <u>w/ RpcDCA < 15</u>) / # of  $\mu$  tracks (\*updated definition is same to the definition of <u>loss of  $\mu$  tracks after MuID steel absorbers</u> so far)
  - Regards Rpc fired properly if the condition RpcDCA < 15 is satisfied</li>
  - Divide geometrical acceptance into  $3 \text{ in } \eta$ ,  $16 \text{ in } \varphi$
- Progress so far:
  - Studied RpcDCA distribution in  $\eta$  to set proper domain
  - Still writing the codes to calculate efficiency

- 1<sup>st</sup> goal: Get total single  $\mu$  reconstruction efficiency ( $\epsilon_{total}$ )
  - $\epsilon_{\text{total}} = \epsilon_{\text{MuTR}} \times \epsilon_{\text{MuID}} \times \epsilon'_{\text{Rpc}}$
  - $\underline{\epsilon'_{Rpc}}$  (relative, by pDSTs) =  $\epsilon_{Rpc}$  (absolute, by Hodoscope) × F(MC)
  - F: fraction factor (indicate amount of fakes/loss by charged hadrons or low p  $\mu$ )
- $\epsilon'_{Rpc}$ : (# of  $\mu$  tracks <u>w/ RpcDCA < 15</u>) / # of  $\mu$  tracks
  - Both of them must satisfy basic cuts:
    - Evt\_bbcZ < 30 (cm)
    - p > 5 (GeV) (\*before: 3)
    - DG0 < 30 (cm)
    - DDG0 < 10 (Deg)
    - lastGap = 4
    - triggerbit = SG1\_MuIDLL1 (NOT applied so far, but plan to use)
  - used data set: pp200GeV official pDSTs, waiting for pp510GeV production
    - Using this set to develop codes: not so many SG1\_MuIDLL1 triggered events in pp200GeV

- Weak points in new definition:
  - Doesn't consider dead space for each Rpc station
  - Doesn't consider timing distribution of Rpc (roughly checked: it looks most of hits related to collsion after basic cuts)
- RpcDCAs:
  - Four type of RpcDCAs available for each Rpc station:
    - RpcMatchVtx
    - RpcatchSt1 (MuTR's St1)
    - RpcMatchSt3
    - RpcMatchMuID
  - Used first two (Vtx and St1) to deal Rpc1, while the latter two used for the Rpc3 (However, all of DCAs have to be used after all)





- Geometrical acceptance sort: 3 in  $\eta$ , 16 in  $\phi$ 
  - in  $\eta$ : divide into <u>Rpc1 only</u>, <u>Overlap</u>, and <u>Rpc3 only</u>
  - in  $\varphi$ : with respect to Rpc3s' HO structure: a segment corresponds to <u>22.5°</u>





#### Progress

• RpcDCA distribution in  $\eta/\phi$  plane (RpcDCA < 15, pp200GeV official)



#### Progress

• Got first results of Weighted Mean Efficiency



#### Progress

• Got first results of Weighted Mean Efficiency



### Summary and To do

- Change in definition of Rpc efficiency:
  - Don't consider Rpc3's geometry anymore
  - Divide geometrical acceptance into 3 × 16 segments
- To do:
  - Complete the code, cross-check calculation method's reliability
  - Use pp510GeV set as soon as it is available
  - Check results when SG1\_MuIDLL1 trigger is applied

### Backup

- Evt\_bbcZ: BBC vertex z position from the PHGlobal node
- lastGap: last hit position of the reconstructed  $\mu$  track in MuID
- DG0:

MuTr track, MuID road matching parameter which give the <u>difference</u> between the <u>extrapolated track</u> and the <u>road at the MUID Gap0</u>

• DDG0:

MuTr track, MUID road matching parameter which give the <u>slope difference</u> between the <u>extrapolated track</u> and the <u>road at the MUID Gap0</u>

• RpcDCA:

<u>transverse distance</u> between the <u>muon tracks' position projected to the RPC3 z position</u> and the <u>closest RPC hit cluster in cm</u>