Multi-hit analysis of LAND (Large Acceptance Neutron Detector)

고려대학교 핵물리 연구실 주은아

LAND(Large Acceptance Neutron Detector) in LAMPS

2

Difficulties in measuring the multi-hit neutron

- Neutron deposit energy randomly
 - hit position is disordered
- One neutron can leave more than one hit in the detector.
 - The number of hits increasing when energy of neutron increasing
- Several neutron hits from one neutron cannot be clearly distinguished from real several neutrons until now.

Neutron, proton, gamma beam profiles

Multi-hit algorithm

- 1. Find the first hit (by hit time information)
- 2. Determine the cluster around the first hit
- 3. Find the second hit and calculate the velocity β_{12}
- 4. Compare β_{12} to incident velocity of neutron β_{init} (by first hit time and detector position)
- 5. If β_{12} is larger than β_{init} , discard the hit information.
- 6. Repeat the procedure with third hit

5

Neutron detector cluster size

-10000 neutrons

-Total means hits over threshold(1MeV)

There is two cluster sizes:

- 1. Geometrical cluster size
- 2. Hit number that one neutron remain

150 MeV

$$r = \sqrt{(x - x_0)^2 + (y - y_0)^2}$$

x, y : hit position x₀, y₀ : neutron incident position

6

Cluster size of 30 MeV neutron

Cluster size of 150 MeV neutron

ratio i	n_20cm/total	0./41824
in_20cm	: 26311	
total :	35468	

ratio in_20cm/total	:	0.753671
in_20cm : 22941		
total : 30439		

problems

- Cluster size is still too large
- The shape of histogram is very similar though threshold energy become larger
 - Although the threshold become larger, the geometrical cluster size is almost same.
- First hit may not be placed the center of the cluster