

Nuclear Physics Laboratory

Design and Performance of Si-Csl Detector System for LAMPS

Suhyun Lee, Songkyo Lee

Dec. 16~17, 2012

- Transmission Detector / Si-Csl array for LAMPS
- Isotope lines
- Measurable Range / Veto Counter
- Mass Plot / Simulation of Collision Event
- Various Designs & Scales / Multiplicity
- Conclusion

Si-Csl array for LAMPS

- Measurement of the charged particles in the forward region
 - pseudo-rapidity up to 2.1 in which TPC and two dipole arms cannot cover
- Three Si layers and + one Csl crystal.
 - Si layers for ΔE & Csl for E
 - 14°~19° & 19°~24° (350 mSr each)

Isotope lines

⊿E vs. E_{res}

Single Particle Monte Carlo

LAMPS Workshop 2012

Measurable Range

Isospin-dependent Quantum Molecular Dynamics (IQMD) Model Fixed target events, Au-Au Collision, 250MeV/u,

LAMPS Workshop 2012

Veto Counter

- The veto counter utilizes the silicon detector with the thickness of 300 $\mu m.$
- If a signal is guarantee in the veto counter, the event was rejected.
 w/o veto

Laboratory

Isotope Lines with Veto

Mass Plot with Si-Csl Array

- Linearize the mass distribution using empirical fit functions.
- By fitting each isotope with gaussian, we could estimate the yield.

Mass Plot with Si-Csl Array

8⁴⁰⁰

^{لل} 300

250

200 150

 $200 \text{ MeV} < E_{tot} < 250 \text{ MeV}$ $E_1 \text{ for } \Delta E_1$

 $E_1 + E_2 + E_3 \text{ for } \Delta E$

LAMPS Workshop 2012

10

veto

10 cm

300 µm

Mass Plot with Si-Csl Array

$E_1 + E_2$ for ΔE

veto

10 cm

300 µm

400

300

500

600

700

800

900 1000 E., (MeV)

Efficiency = $\frac{N_{\text{registered}}}{N_{\text{emitted to detection area}}}$

Dec. 16~17, 2012

Various Designs & Scales

(2) : one layer

Songkyo Lee (Korea Univ.) (3) : one layer w/ square-shaped surface

LAMPS Workshop 2012

13

16 Channels

Songkyo Lee (Korea Univ.)

- 4 different shapes

- For each channel front surface = $|cm \times |cm$, back surface = $|.5cm \times |.5cm$

- $4 \times 4 = 16$ channels for 1 sector

- 8 sectors in total

 \Rightarrow 16×8 = 128 channels

Multi-channels & Collimator

Songkyo Lee (Korea Univ.)

Laboratory

- Thickness of Silicon layers?
 - Three silicon-strip layers (100, 400 and 400 $\mu m)$, veto?
 - A Csl crystal bar (10, 13 or 15 cm) → depth
- Design?
 - Double or single layer?
 - squared-shape?
- Channels
 - Strip or pixel? size?
 - Event generator
- Coverage
 - Collimator, aperture radius, # of layers....

Back up

Physics

Si test telescope for GASPARD Laboratory

Physics Laboratory The High Resolution Array, HiRA

LAMPS Workshop 2012

Conditions for Simulations

Beam	1 H, 2 H, 3 H 3 He, 4 He 6 Li, 7 Li 8 Be, 9 Be 10 B, 11 B 12 C, 13 C 14 N, 15 N 16 O, 17 O, 18 O 19 F
Samples	30000 per isotope
Energe range	(0 to 1) GeV
Geant4 ver.	Geant4 9.5, patch-01

• RAON : Name of Rare Isotope accelerator complex (Pure Korean word: meaning ''delight'', ''joyful'', ''happy'')

Large Acceptance MultiPurpose Spectrometer (LAMPS)

LAMPS Workshop 2012

Transmission Detector (DE-E method)

IQMD data (generate)

IQMD data (forward)

Nuclear Physics Laboratory

Simulation of Collision Event

IQMD model

veto

10 cm

300 µm

LAMPS Workshop 2012

Dec. 16~17, 2012

Nuclear Physics Laboratory

Simulation of Collision Event

IQMD Model

emit 1-layered

▲ 2-layered ▼ 3-layered

> 300 E_{to}

emit

1-layered

🔺 2-layered

▼ 3-layered

100

150

200

250

800

900

700

600

400

500

veto

10 cm

300 µm

E.

LAMPS Workshop 2012

26

Hybrid Setup

Nuclear Physics Laboratory

Multiplicity

Songkyo Lee (Korea Univ.)

- IQMD data simulation
- Au-Au collision at 250 A·MeV
- Normalized by event num. (10000 events in total)

entries ~ 2

entries ~ 0.14

 ΔE -E Graphs

Songkyo Lee (Korea Univ.)

- material : Csl
- with veto counter

Properties of inorganic scintillators

Parameter:	ρ	MP^{a}	$X_0{}^b$	n^c	Relative	Hydro-	$d(LY)/dT^d$
					output	scopic	
Units:	$\rm g/cm^3$	$^{\circ}\mathrm{C}$	cm				$\%/^{\circ}C$
NaI(Tl)	3.67	651	2.59	1.85	100	yes	-0.2
BGO	7.13	1050	1.12	2.15	21	no	-0.9
BaF_2	4.89	1280	2.03	1.50	36^{s}	no	-1.9^{s}
					4.1^{f}		$\sim 0.1^{f}$
CsI(Tl)	4.51	621	1.86	1.79	165	slight	0.3
CsI(pure)	4.51	621	1.86	1.95	3.6^{s}	slight	-1.3
					1.1^{f}		
$PbWO_4$	8.3	1123	0.89	2.20	0.083^{s}	no	-2.5
					0.29^{f}		
LSO(Ce)	7.40	2050	1.14	1.82	83	no	-0.2
$LaBr_3(Ce)$	5.29	788	1.88	1.9	130	yes	0.2

^aMelting point.

^bRadiation length.

^cIndex of reflection.

^dTemperature dependence of the light yield.

Laboratory

Various Designs & Scales

Songkyo Lee (Korea Univ.)

Front View

: double layer

: one layer

: one layer w/ square-shaped surface y

For Mass Plot

3295 / 10584

-287.1± 3.67

 0 ± 1.414

Multiplicity

(53)

- IQMD data simulation
- Au-Au collision at 250 AMeV
- Normalized by event num. (10000 events in total)
- I.All <u>charged</u> particles generated by simulation:

entries ~ 130

entries ~ 23

(cf: including neutral ptl ~ 300)

2. b/w 14-24 deg. (detector coverage range)

3. Particles entered into detector

1

1

Laboratory

KOREA UNIVERSITY

4. Particles entered into one detector

Physics Laboratory Multiplicity & Initial energy hist.

histogram : per channel X entered into detector (veto ignored)

KOREA

LAMPS Workshop 2012