Design of LAMPS-L

고려대학교 핵물리 연구실 주은아

DayOne Design

Neutron Wall in GANIL

Using ToF to measure the energy of neutrons.

Neutron Wall (previous version of NEDA)

50 closely packed liquid scintillator detectors of three types: H1, H2, P. Liquid: BC501A (xylene), total volume 150 litre. Distance to target: 51 cm; detector thickness: 15 cm. Detector angles: from 0° to $\simeq 60^{\circ}$ Neutron energy range: from $\simeq 0.5$ MeV to $\simeq 10$ MeV

Experiment at GANIL (2009) EXOGAM + DIAMANT + Neutron Wall ³⁶Ar (111 MeV) + ⁵⁸Ni \rightarrow ⁹²Pd + 2 n Cross section: σ (⁹²Pd) \simeq 1 μ b, σ (fusion) \simeq 0.2 b,

NEDA(Neutron Detector Array) in GANIL

NEDA Efficiencies from different geometries

Expected neutron energy and distribution (from simulation)

Fig. 2. Simulated energy distributions of neutrons in the laboratory system as obtained by evapOR and GEANT4 using the reaction ${}^{58}Ni(220 \text{ MeV}) + {}^{56}Fe(10 \text{ mg/cm}^2)$. The shown curves correspond to hits in the different groups of detector segments, with their central position angles indicated in the legend. The detector segments at $\theta = 46.8^{\circ}$ and 47.2° are shown together as the $\theta = 47.0^{\circ}$ curve. The total number of neutrons emitted in 4π was 10^{6} in this simulation. The scale on the *y*-axis shows the number of neutrons emitted in each angular group.

Neutron wall simulation

Neutron deficient nuclei up to the region of ¹⁰⁰Sn, fusion-evaporation reaction

Simulation result is similar to the energy distribution of neutron from ²⁵²Cf source

Neutrons were isotropically emitted in 4π

NEDA simulation

NEDA output (from Geant4 simulation)

BC537 : C₆D₆, BC501A : C₈H₁₀

$$P_{1n\to 2n} = N_{d\ge 2}^{1n} / N_{d\ge 1}^{1n}$$

where $N_{d\geq 2}^{1n}$ is the number of events in which 1 neutron was emitted and at least 2 detector fired. In the following discussion $P_{1n\to 2n}$ is referred to as *cross-talk*.

Efficiency and energy resolution

Efficiency

Intrinsic neutron efficiency at $E_n = 2$ MeV: $\varepsilon_{1n,i} \simeq 80\%$

Total Neutron Wall efficiency for symmetric fusion evaporation reactions:

- One-neutron efficiency: $\varepsilon_{1n} = 20-25\%$
- Two-neutron efficiency: $\varepsilon_{2n} = 1-3\%$

Energy resolution (Time-of-Flight)

- Distance source to detector front face: 51 cm
- Thickness of detectors: 14.8 cm
- Time resolution of detectors: FWHM = 1.5 ns

8

possible designs

Back up

Neutron scattering

Probability of 1 neutron giving a signal in 2 or more detectors $\simeq 10\%$.

Serious problem in searches for weakly populated $\geq 2n$ reaction channels: scattered neutrons from much stronger 1n channels are mis-identified as being due to 2n, 3n, ... channels.

Methods to detect scattered neutrons:

- Neighbor rejection.
- ΔToF. J.Cederkäll et al. NIM A385 (1997) 166.

Small amounts of γ rays mis-identified as neutrons reduces dramatically the quality of the neutron scattering reduction

2012-12-16

