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Miroslav Morháč�, Martin Veselský
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Abstract

In the paper, we propose new algorithm of the determination of ridges in two-dimensional spectra of nuclear multifragmentation. The

algorithm is based on slicing the raw data and their subsequent linearization. To find corresponding points, which contribute to the

estimate of fitted line parameters in sparsely distributed linearized data, as well as to span gaps and decrease statistical fluctuations,

the algorithm is based on smoothing technique using second derivatives of Gaussian. In the paper, we analyze and study thoroughly the

influence of various parameters. Illustrative examples prove in favor of the proposed algorithm.

r 2008 Elsevier B.V. All rights reserved.
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1. Introduction

In the nuclear reactions well above Coulomb barrier,
multiple charged particles are emitted in a wide angular
range. In order to detect all charged particles emitted
during the reaction, multi-detector arrays consisting of
many charged particle telescopes emerged, with optimized
choice of angular coverage (ideally 4�p), granularity and
detection thresholds. An important step in the off-line
analysis of data from the multi-detector arrays with large
angular coverage is to identify as many fragment species as
possible. The method of isotope identification is based on
well-known particle telescope technique in which the
isotopes are resolved in two-dimensional (2D) DE�E

spectra of energy losses in two detectors (typically a thin
one followed by a thick one). The method needs to be
applied to all detectors, which makes the analysis a highly
repetitive task and methods allowing automation are
preferable.
e front matter r 2008 Elsevier B.V. All rights reserved.
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Main task of the analysis is to parametrize the relation of
energy losses to observed electronic signals in two
detectors. Charge identification was achieved in the work
[1] by obtaining analytical fit of calculated energy losses for
specific fragment species and by mapping of resulting
matrix on a set of sampled experimental lines using the
minimization procedure, with particle charge being the
minimization parameter. In other works [2,3] the subset of
lines with a priori known mass and charge was sampled
and the parameters relating the energy loss to electronic
signals are obtained by minimization procedure. Such
method enables to carry out identification and energy
calibrations simultaneously using a minimization proce-
dure applied to 2D spectra. For instance, in the work [2]
the lines for three known isotopes (typically the most
characteristic isotopes such as 1H, 4He, 9Be) are assigned in
the experimental spectra and calibration is carried out by a
minimization procedure where these lines are fitted to
corresponding calculated energy losses for a given DE�E

telescope. The calibrations coefficients are thus obtained as
optimum values of minimization parameters and identifi-
cation can be achieved after superimposing the calculated
energy loss lines onto experimental spectra. In this
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procedure, the initial assignment of the selected isotope
lines required human intervention, since the lines had to be
drawn by hand. To make such procedure fully automatic,
one needs an algorithm which would recognize and
tabulate some of the isotope lines in the 2D spectra
(manifested as non-linear ridges). In the works [4,5],
algorithms were proposed to recognize individual spectral
lines in the 2D spectra, using the smoothing and
differentiation methods [4] or neural network approach
[5]. Separation of experimental lines with different atomic
number was achieved. An alternative algorithm for
Fig. 1. (a) An example of two-dimensional spectrum of nuclear multifragment

originating from a pair of silicon detectors and recorded by the corresponding
recognition of isotope lines is proposed in the present
work.

2. Proposal and formulation of the algorithm

During the process of nuclear multifragmentation,
multiple charged particles are produced. An important
step in the analysis of data of this kind is to identify
correctly the fragment species. As opposed to the
identification of self-standing peaks (one-, or multidimen-
sional, e.g. in g-ray spectra) here we have to find also the
ation, and its detail. (b) The variables x and y represent electronic signals

ADCs.
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correspondence among the identified local maxima belong-
ing to the same ridge.

Let us now analyze the problems connected with the process
of determination of ridges in the spectra of nuclear multi-
fragmentation. To make things clear we shall accompany our
considerations with an illustrative example. In Fig. 1a one can
see 2D energy loss spectrum from the telescope, consisting of
two silicon detectors, of the size 1000� 1000 channels. The
data originate from a pair of silicon detectors with respective
thickness 150 and 500mm and the electronic gains were
adjusted to equalize amplitudes in both electronic channels.
The variables x and y represent electronic signals recorded by
the corresponding ADCs. The shape of the spectral lines in the
spectrum is a usual one for such type of detectors. The empty
region on the top left is caused by the punch through of the
second silicon detector, which defines a maximum energy.
Particles with higher energies are not shown in the plot, except
few events where anticoincidence signal was not detected
(represented by weak line where energy losses in both silicon
detectors decrease simultaneously). The isotopic resolution in
the spectrum is achieved up to the Z ¼ 10.

To illustrate the complexity and statistical fluctuations in
the data in Fig. 1b we show detail at the beginning of the
coordinate system. We have to determine ridges of
corresponding points from very sparsely distributed 2D
experimental data. Besides, the spectra of nuclear multi-
fragmentation are extremely noisy.

At the first glance at the data in Fig. 1a one can observe
that the data vary over many orders of magnitude going
from thousands of counts at the beginning of the spectrum
to tens or ones in its rest. To compress the dynamic range
in channel counts and to suppress the effect of the noise in
the data sets a series of mathematical operators were
Fig. 2. Spectrum from Fig. 1 after
studied in Ref. [6]. Taking the square root, then using the
natural log operator twice (LLS) was claimed to yield the
best results. LLS operator is applied to every channel y(i)

vðiÞ ¼ log½logð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yðiÞ þ 1

p
þ 1Þ þ 1� (1)

The application of LLS operator is an important starting
point in the identification of ridges in the spectra of nuclear
multifragmentation. In Fig. 2 we present the spectrum
from Fig. 1 after application of LLS operator.
The procedure of the identification of non-linear ridges

can be split down into several points. The first step of the
non-linear ridges identification is their quasi-linearization.
Though it is possible to do it in various ways (e.g. to
transform data to polar coordinates) we proposed rather
simple approach based on the slicing of original data from
a given point according to Fig. 3. Let us start slicing at the
point A and go along the diagonal to the beginning of the
original coordinate system. The distance from the point
A represents the parameter S. In this way we get the slice
number 0. When changing successively the end points of
the slices to 1, 2,y, N�1 on both axes x1 and x2 we get
slices R and L, respectively. The new S coordinate is the
distance from the point A, while the new R and L

coordinates represent the number of the slice or in other
words the length of the segment intercepted by the slice on
the axis x1 and x2, respectively.
Due to the outlined coordinate transformation we obtain

data in two halfplanes arranged predominantly in quasi-
linear directions. The curvatures on the left and right sides
of the lines are different. Therefore, the angles of the
arrangements in both halfplanes are also different.
Spectrum from Fig. 2 sliced according to the algorithm
of slicing outlined in Fig. 3 is shown in Fig. 4. One can
application of LLS operator.
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observe that the trends in both halfplanes can be well
approximated by straight lines one for each halfplane.

On the other hand the linearized data in Fig. 4 are also
distributed sparsely. From the above mentioned considera-
tions one can conclude that the algorithm of ridges
identification should
(a)
 suppress statistical fluctuations,

(b)
 glue together points in the linear directions,
Fig. 3. Principle of slicing of two-dimensional spectrum.

Fig. 4. Spectrum from Fig. 2 sliced and linearized
(c)
acco
separate linearized ridges from each other (in vertical
direction),
(d)
 ignore other artificial objects (e.g. diagonal ridge—
see Fig. 1).
To suppress statistical fluctuations in the linearized data we
employed second derivative filtration technique. Using this
technique together with suppression of noise we can carry out
peak searching in one-dimensional (1D) slices. There exist a
lot of algorithms of this, at the first glance very simple, but in
its essence very complicated and complex problem [7–10]. In
Refs. [11,12] so-called correlation technique emerged. It is
based on the second derivative of the Gaussian as the
convolution function, called also the correlator

cðjÞ ¼
j2 � s2

s4
exp �

j2

2s2

� �
¼

d2

dx2
exp �

x2

2s2

� �
x¼j

(2)

where s determines the width of searched peaks. The
convolution of input data x with correlator c yields

yðiÞ ¼
Xi

k¼0

xðkÞcði � kÞ; i ¼ 0; 1; . . . ;N � 1. (3)

The local minimums of y(j) identify positions of peaks. As
we need to carry out the peak smoothing and searching in
several directions and moreover we also need to confine the
peak regions of potential peak candidates to finite intervals
we propose a technique based on inverted positive second
derivative (IPSD) of the Gaussian

pðjÞ ¼
�yðjÞ if yðjÞo0;

0 otherwise:

�
(4)
rding to the algorithm outlined in Fig. 3.
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The example of the second derivative and IPSD of the
Gaussian for s=20 is presented in Fig. 5a and b, respectively.

Now let us apply the IPSD algorithm of filtering
(s ¼ 20) to the columns of linearized data shown in
Fig. 4. We get data smoothed in vertical directions given
in Fig. 6.

To glue the slices together we repeat the same procedure
in horizontal direction with s2 ¼ 30. We obtain data
presented in Fig. 7.

Now we need to determine directions of ridges in both
halfplanes. To determine seed points of the direction lines
we can find maximums in the slice 0 (Fig. 8).
Fig. 5. The example of the second derivative (a) and inverted
We find sequences of maximums in neighboring slices in
both directions. By fitting the sequences with lines and
taking the estimates with the smallest chi-squares we
get direction angles of dominant ridges in both directions
(Fig. 9).
In the directions determined by these angles we carry out

the smoothing of original (non-smoothed) sliced data
employing convolution technique with Gaussian filter with
given s3. To span gaps in sparsely distributed data and to
determine intrinsically the correspondence among experi-
mental points in the spectrum the parameter s3 should be
set to an appropriate value. Analogously to Eq. (3) the
positive second derivative (b) of the Gaussian for s ¼ 20.
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Fig. 7. Data from Fig. 6 smoothed in horizontal direction (s2 ¼ 30).

Fig. 6. Data from Fig. 4 smoothed vertically with IPSD filter with s1 ¼ 20.
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convolution of input data x with filter g is

yðiÞ ¼
Xi

k¼0

xðkÞgði � kÞ; i ¼ 0; 1; . . . ;N � 1. (5)

Further, let us return back to our example data in Fig. 4.
Let us find the directions in both halfplanes and smooth
the data in these directions using Eq. (5). The result of this
operation for s3 ¼ 30 is given in Fig. 10.
The points in corresponding ridges are connected.

However, we need to separate peaks and smooth data in
the vertical direction. Moreover, we need to confine data to
regions of peaks and to eliminate data outside these
regions. Therefore, we employ again the IPSD algorithm
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Fig. 8. Slice 0 from the data from Fig. 7.

Fig. 9. Linearized ridges in sliced and twice smoothed two-dimensional

spectrum.
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given by Eqs. (2)–(4) with s4=20. We get smoothed data in
both directions with connected points in corresponding
ridges (Fig. 11).

Analogously to Fig. 8 we can take slice 0. The local
maximums in this data can serve as seed points to find
corresponding points in ridges in both halfplanes. We look
for the local maximums (in vertical direction) in the
neighboring slices. The principle and scanning window for
the right halfplane and for the first ridge is given in Fig. 12.
We assume that starting from the point A we have already
found the points belonging to the ridge until point B. Now
we have to find the next point within the outlined skew
window. The height of the window is 2 � s4, its width is s3
and its slope is given by the direction angle for the right
halfplane. If we find a maximum in this window we take it
to be the ridge point and move the scanning window to
right and repeat the scanning for the next point. Otherwise,
we take the point B to be the last point of the ridge and we
proceed to the next ridge. In this way we can determine all
ridges.
Finally, in the last step we transform the ridges back to

the original space of the 2D spectrum. The result of our
example data is given in Fig. 13.
Let us summarize and express the above described

algorithm of the identification of non-linear ridges
concisely in several points:
(a)
 To compress the dynamic range of the channel counts
apply the LLS operator to the spectrum data according
to Eq. (1).
(b)
 The next step of the non-linear ridges identification is
their quasi-linearization. We propose rather simple
approach based on the slicing of original data from a
given point according to Fig. 3.
(c)
 We obtain data in two halfplanes arranged predomi-
nantly in quasi-linear directions. However, the angles
of the arrangements in both halfplanes are different. To
suppress statistical fluctuations in the data we em-
ployed IPSD technique defined in Eqs. (2)–(4). We
carry out smoothing using IPSD of Gaussian with
given s1 separately for every slice (vertically in Fig. 3)
in both halfplanes.
(d)
 To span gaps and decrease statistical fluctuations in the
data in the horizontal direction we employ again IPSD
technique (parameter s2).
(e)
 We find local maximums in the slice 0 greater than a
threshold value (given in percentage of the maximum
value in the slice 0) and use them as seed points for the
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Fig. 10. Data from Fig. 4 after Gaussian smoothing in the direction of ridges s3 ¼ 30.

Fig. 11. Data from Fig. 10 after application of IPSD filter with s4 ¼ 20.
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determination of dominant directions in both half-
planes.
(f)
 In the next step, we find dominant directions of lines in
both halfplanes by fitting corresponding local maxima
in the smoothed inverted positive SSD data. We obtain
direction angles for both halfplanes (see Fig. 9).
(g)
 In the directions determined by these angles we carry
out the smoothing of original (non-smoothed) sliced
data employing convolution technique (5) with Gaus-
sian filter with a given s3. The parameter s3 influences
smoothness of the estimated ridges.
(h)
 Further, the data smoothed in the dominant directions
are submitted to another smoothing in the vertical
direction S with IPSD of Gaussian with s4.
(i)
 To identify seeds of ridges in the column number 0 we
find local maxima.
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(j)
Fig.

slice
In the last but one step we have to determine
neighboring points (maximums) belonging to one
ridge. We look for neighboring maximums in both
direction angles. Let us assume we have found
12. Principle of searching for neighboring maximums in vertical

s.

Fig. 13. Two-dimensional spectrum of nuclear multifragmentation with dete
maximum in the right halfplane in the point (x1, y1) we
look for the maximum in the column (x ¼ x1+1, yA
/y1�s4, y1+s4S). Nevertheless, even among max-
imums of twice smoothed data, there can be gaps.
To span these possible gaps we search for the
maximums within the quadrangle (x ¼ x1+i, yA
/y1�s4+kr � i, y1+s4+kr � iS), iA/1, s3S. The width
of the quadrangle is given by appropriate coefficients
s for smoothing in the direction of ridges and the
last vertical smoothing. The situation for the left
halfplane is analogous. The principle of looking
for next corresponding local maximum is illustrated
in Fig. 12.
(k)
 Finally we transform back the ridges points to original
2D spectrum.
3. Discussion and results

Crucial point of the above described algorithm is
linearization of data in the transformed domain. To
compare the proposed method with the transformation to
polar coordinates, which is an alternative to the suggested
algorithm outlined in Fig. 3, we introduce the example with
the same data from Fig. 2. In Fig. 14a we present data from
Fig. 2 transformed to polar coordinates. Here the transi-
tion from the right halfplane to the left one is much
smoother than in the previous method. On the other hand
the data cannot be linearized so smoothly, i.e., one
can observe a greater non-linearity in appropriate ridges.
rmined ridges (parameters s1 ¼ 20, s2 ¼ 30, s3 ¼ 30, s4 ¼ 20).
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Fig. 14. (a) Transformation of spectrum from Fig. 2 to polar coordinates (b) and identified ridges transformed back to the original spectrum.
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This results in non-acceptable estimate of the ridges given
in Fig. 14b.

Now let us study the influence of the parameters (s1, s2,
s3, s4 and threshold) to the estimation of the ridges.
Though by tuning these parameters some improvements
for polar model of linearization can be achieved in the
following examples we shall consider only slicing model
of linearization. The first two parameters s1, s2 are
used for the filtration of linearized data in vertical and
horizontal direction, respectively, by employing IPSD
algorithm. Filtered data are subsequently used for the
determination of dominant directions in these data. The
algorithm is rather independent and robust to the changes
of these parameters. We have studied the influence of s1, s2
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by changing them in the range /5, 50S. The estimates
practically coincide with the result shown in Fig. 13.

Further let us analyze the influence of the parameter s3.
Through the use of this parameter one can control
smoothness of the estimated ridges. The examples for
s3 ¼ 5, 10, 20, 50 are illustrated in Fig. 15. With increasing
Fig. 15. Two-dimensional spectrum of nuclear multifragmentation with rid

(d) s3 ¼ 50 (s1 ¼ 20, s2 ¼ 30, s4 ¼ 20).
s3 the estimated curves are getting smoother but on the
other hand, one can observe undesirable slight distortion
of their shapes on the right-hand side for the ridges 2, 3
and 4.
When comparing the results achieved in Figs. 13, 14b

and 15 we see that the algorithm is able to discover main
ges estimated with parameters (a) s3 ¼ 5, (b) s3 ¼ 10, (c) s3 ¼ 20 and
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Fig. 15. (Continued)
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ridges but it is unable to decompose and identify individual
ridges of the clusters (see Fig. 1). By changing
the parameter s4 in the last vertical filtration one can
influence the width of identified ridges, or in other words
to decompose them to subridges. In Fig. 16 we illustrate
the results after application of the algorithm for s4 ¼ 10
and 3. In Fig. 16a it discovers two subridges in the ridge 7
and identifies seeds of the ridges R0 and R11. When
decreasing s4 to 3 we can decompose the main ridges
to even more subridges. However, due to the loss
of correlation among the points belonging to appro-
priate ridges, the lines are becoming shorter. The shape
of lines fits better the original points in the spectrum than
in Fig. 13.
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Fig. 16. Two-dimensional spectrum of nuclear multifragmentation with ridges estimated with parameters (a) s4 ¼ 10 and (b) s4 ¼ 3 (s1 ¼ 20, s2 ¼ 30,

s3 ¼ 30).

M. Morháč, M. Veselský / Nuclear Instruments and Methods in Physics Research A 592 (2008) 434–450446
The other way to increase resolution in the estimation of
ridges is to employ the operation of Gold deconvolution
[13–15]. Analogously to the filtration in the columns of the
data presented in Fig. 11 we slice the data in vertical
direction. We get data similar to those presented in Fig. 8.
Then for s ¼ sd according to Eq. (2) we generate the
second derivative of the Gaussian c(j) and we take

rðjÞ ¼
�cðjÞ if cðjÞo0

0 otherwise

�
(6)
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Fig. 17. (a) Data from Fig. 11 (s1 ¼ 20, s2 ¼ 30, s3 ¼ 30, s4 ¼ 20) after application of deconvolution operation to vertical slices (sd ¼ 5) and (b)

estimated decomposed slices transformed back to the two-dimensional spectrum of nuclear multifragmentation.
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to be the response function (data similar to Fig. 5b). After
application of the deconvolution algorithm for sd ¼ 5 we
obtain data shown in Fig. 17a. One can observe decom-
position of main ridges to their components. After their
identification and backward transformation to the space of
original spectrum we present the result in Fig. 17b.
Apparently the deconvolution operation decomposes the
clusters of ridges.
The last free parameter in the estimation of ridges is

threshold value, which influences the sensitivity of the
algorithm. So far we have processed all the data with
threshold value equal to 4%. Furthermore one can change
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the starting point of the slicing according to Fig. 18. By now
we have used the point A as the starting point of slicing.

In Fig. 19 we moved the starting point of slicing to
the point A0. In the example we increased the length of
the square to l0 ¼ 2N and we changed the threshold
value to 1%. One can observe that the identified
ridges are smoother and the algorithm discovers also the
ridge 11.

Until now we have analyzed 2D spectrum representing
the telescope, consisting of two silicon detectors, given in
Fig. 19. Two-dimensional spectrum of nuclear multifragmentation with ridges

s2 ¼ 30, s3 ¼ 30, s4 ¼ 20).

Fig. 18. Outline of choosing of starting point of slicing in two-

dimensional spectrum.
Fig. 1. In Figs. 20 and 21 we present two other results of
the identification of ridges in the telescope, consisting of
one silicon detector followed by thick CsI scintillator
crystal. Again good fidelity of the estimates of ridges can be
observed.
Sometimes, e.g. for the 2D spectrum, obtained using CsI

scintillator crystal via pulse shape discrimination techni-
que, due to the course of the scattered data from the
experiment it is necessary to change the starting point of
the slicing. In the last example according to visual
adjustment of the data we have moved it to the point C

(see Fig. 18). Again good agreement of the estimated
ridges with experimental measurements can be observed
(Fig. 22).
4. Conclusion

An algorithm, allowing to automatically recognize
isotope lines (manifested as non-linear ridges in the 2D
spectra) in the 2D energy loss spectra of charged particles,
is proposed in the present work.
The method presented in the work is a suitable extension

of the method from [2], which after proper tuning can
further minimize the human intervention, reducing it to
supervision of the procedure. Due to its simplicity the
method lends itself for the application during on-line
acquisition where one often needs a preliminary fast
evaluation of the yield.
The above described algorithm is rather simple and

allows its realization on PC computers. Though the
estimated (threshold ¼ 1%) with slicing started from at point A0 (s1 ¼ 20,
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Fig. 20. Example of two-dimensional spectrum of nuclear multifragmentation with estimated ridges (s1 ¼ 20, s2 ¼ 30, s3 ¼ 30, s4 ¼ 5).

Fig. 21. Another example of two-dimensional spectrum of nuclear multifragmentation with estimated ridges (s1 ¼ 10, s2 ¼ 10, s3 ¼ 10, s4 ¼ 5).
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procedure is fully automatic, due to large variability of the
data, some intervention of the user and tuning of some
parameters are required. The algorithm is rather fast. For
example to process 2D spectrum with 1000� 1000 channels
it takes approximately 30 s (using PC, 3.2GHz). However,
when we include deconvolution procedure, which is time
consuming operation, it takes, depending on number of
iterations, several minutes (in our examples approximately
5min). The method was implemented and integrated in
DaqProVis system [16,17].
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Fig. 22. Two-dimensional spectrum of nuclear multifragmentation with ridges estimated with slicing started at the point C (s1 ¼ 20, s2 ¼ 30, s3 ¼ 30,

s4 ¼ 10).
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